การคิดหัวข้อวิจัย แบบไม่ได้เริ่มต้นที่ทฤษฎี 100 % ทำได้หรือไม่

การคิดหัวข้อวิจัย แบบไม่ได้เริ่มต้นที่ทฤษฎี 100 % ทำได้หรือไม่
.
“From Theory-driven to Problem-driven or Data-driven Research”
.
วันนี้จะพักเรื่องเกี่ยวกับสถิติและกลับมาพูดกันถึงการวิจัยสักนิด โดยเฉพาะส่วนที่เกี่ยวข้องกับการคิด Research Idea หรือ Research Question หลายครั้งเรามักติดกับดักความคิดที่ทำให้เราไม่สามารถทำวิจัยต่อได้ เพราะอ้างว่าหาหัวข้อการวิจัยไม่ได้ หรือหัวข้อการวิจัยไม่ดีพอเราจึงหยุดทำต่อไป
.
ต้องยอมรับว่าการหาไอเดียการวิจัยโดยอ้างอิงการ Challenge Assumption ของทฤษฎีใดทฤษฎีหนึ่งต้องใช้เวลาและอาศัยการสเคราะห์ที่ลึกซึ้ง ในความจริงแล้วการคิดหัวข้อวิจัยอาจไม่จำเป็นต้องเริ่มต้นที่ทฤษฎีก่อนเสมอไป การเริ่มหัวข้อการวิจัยอาจเริ่มที่การวิเคราะห์ข้อมูลหรือปัญหาในการนำไปใช้ได้
.
นักวิชาการ/นักวิจัยสามารถเริ่มต้นคิดไอเดียการวิจัยได้โดยวิธีอื่นๆ ในที่นี่จะกล่าวถึง 2 วิธี คือ
.

  1. Data-driven Research คือ การหาหัวข้อการวิจัยโดยให้ข้อมูลและการวิเคราะห์ข้อมูลเป็นตัวผลักดันและคิดหัวข้อวิจัย หัวใจของวิธีนี้ คือ การหาหัวข้อและไอเดียโดยให้ผลการวิเคราะห์ข้อมูลเป็นตัวเล่าเรื่อง สร้างแนวคิดวิจัยใหม่ในหัวข้อที่สนใจ อาจจะเป็นการทดสอบแนวคิดวิจัยใหม่ๆ ที่นักวิจัยยังไม่เคยทดสอบ เริ่มต้นการวิเคราะห์โดยข้อมูลที่มีอยู่ ทำการวิเคราะห์โดยปราศจากคำถามวิจัยใดใด ข้อมูลประเภท Big Data และ Data Analytics เหมาะที่จะทำการวิเคราะห์และค้นหาหัวข้อการวิจัยในมุมนี้
    .
    การวิจัยแบบ Data-driven research จะแตกต่างจาก Problem-drive research คือ จะเป็นการวิจัยที่ทำการเก็บข้อมูลหรือใช้ข้อมูลที่มีอยู่แล้ว (Big Data) ทำการวิเคราะห์ข้อมูลก่อนที่ Specific problem จะถูกพัฒนาขึ้น บางครั้งอาจใช้การ Explore เช่นใช้ Cluster analysis แบ่งกลุ่มหรือดู Pattern ของข้อมูลแล้วพยายามอธิบาย
    .
  2. Problem-drive Research คือ การหาหัวข้อวิจัยโดยผลักดันจากปัญหาที่เกิดขึ้นในการปฏิบัติและพยายามหาคำตอบ และใช้แนวคิดการวิจัยจากแนวปฏิบัติมาพยายามปรับปรุงการทำงานที่กำลังทำอยู่ คิดคำถามวิจัยจาก Practical Problem เช่นจำทำอะไรที่แตกต่างจากเดิมเพื่อให้ดีขึ้น การทำแตกต่างจากเดิมต้องอาศัยกลไกใดบ้าง ออกแบบการวิจัยตามปัญหาที่ต้องการหาคำตอบ เป็นการทำวิจัยในเชิงปฏิบัติที่นำไปสู่แนวคิดหรือโมเดล
    .
    อย่างไรก็ตามไม่ว่าจะเป็น Data-driven หรือ Problem-driven Research ถ้าจะเป็นการวิจัยเชิงวิชาการที่ตีพิมพ์ในวารสารวิชาการ ก็จำเป็นอย่างยิ่งที่จะต้องทักถอทฤษฎีที่เกี่ยวข้องเพื่ออธิบายหรือสร้าง Argument ของปรากฎการณ์หรือแนวคิดการวิจัยที่เกิดขึ้น ถ้าปราศจากส่วนสำคัญนี้ก็จะไม่เป็นงานวิจัยเชิงวิชาการที่สมบรูณ์ คำนี้สำคัญ คือคำว่า “Merging Theory to Practice”
    .
    (อย่าเข้าใจผิดว่า Problem หรือ Data-driven research คือการละเลยทฤษฎี)
    .
    ส่วนอีกแบบหนึ่ง คือ Theory-driven Research แบบนี้ คือ หลักทั่วไปของงานวิจัยเชิงวิชาการที่เริ่มต้นจากการ Challenge Assumption ของทฤษฎีที่มีอยู่ พยายามหาช่องว่างของการสร้าง argument จากทฤษฎีในปัจจุบัน แบบนี้จะสร้าง Contribution ทางทฤษฎีได้มาก อย่างไรก็ตามแบบนี้ก็ยังเป็นแบบที่ครบถ้วนในการทำวิจัยเชิงวิชาการ
    .
    สาเหตุของข้อเขียนวันนี้ สืบเนื่องจากมีอาจารย์หลายท่านมักถามว่าจะทำอย่างไรดีถ้าต้องทำวิจัยในเชิงปฏิบัติจะด้วยสาเหตุใดใดก็ตาม เช่น เข้าไปช่วยองค์การในการปรับปรุงการทำงานแก้ปัญหาเชิงปฏิบัติ และจะทำยังไงต่อถ้าอยากจะไปตีพิมพ์ในวารสารวิชาการ และขอตำแหน่งวิชาการ
    .
    คำตอบ คือ ไม่มีปัญหาและเป็นไปได้ ที่ให้ Problem หรือ Data -driven ก่อน แต่จะต้องมีส่วนที่สำคัญ คือ ส่วนที่นำเอาทฤษฎีที่เหมาะสมมาอธิบายคำตอบที่ได้จากการวิเคราะห์ข้อมูลหรือ Practical problem ที่เกิดขึ้น
    .
    ปัจจุบันแนวทางการวิจัยขยับออกไปมากขึ้นสู่ Practical-based โดยเฉพาะในยุคของ Data Analytics
    .
    ลองอ่านบทความนี้ โดย Simchi-Levi (2013) ที่อ้างอิงถึงกันดู
    .
    .
    Ref:
    Simchi-Levi, D. (2013). Om forum—om research: From problem-driven to data-driven research. Manufacturing & Service Operations Management, 16(1), 2-10.

You might also enjoy

ปกป้องความเป็นส่วนตัวของคุณในยุคดิจิทัลอย่างไรให้ปลอดภัย?
ปกป้องความเป็นส่วนตัวของคุณในยุคดิจิทัลอย่างไรให้ปลอดภัย?

การรักษาความเป็นส่วนตัวและความปลอดภัยทางไซเบอร์เป็นเรื่องที่สำคัญมากในยุคสมัยนี้ ไม่ว่าจะเป็นข้อมูลส่วนบุคคลหรือการใช้งานอินเทอร์เน็ตต่างๆ สิ่งสำคัญคือการทำให้ทุกอย่างปลอดภัยและอยู่ภายใต้การควบคุมของคุณเอง 💻📱 🔑 3 ขั้นตอนง่ายๆ ที่คุณสามารถทำได้: ไม่ว่าคุณจะใช้งานบนคอมพิวเตอร์หรือมือถือ การรักษาความปลอดภัยไซเบอร์เริ่มจากการปกป้องตนเองวันนี้

Dissertation กับ Thesis ต่างกันอย่างไร
Dissertation กับ Thesis ต่างกันอย่างไร

ในการศึกษาระดับสูง, thesis และ dissertation เป็นสองเอกสารวิชาการที่สำคัญซึ่งมักสร้างความสับสนให้กับนักศึกษาในการทำความเข้าใจความแตกต่างระหว่างสองอย่างนี้ เนื่องจากทั้งสองมีลักษณะที่คล้ายคลึงกัน แต่จริงๆ แล้วมีความแตกต่างกันอย่างชัดเจนตามเกณฑ์และความต้องการของแต่ละโปรแกรมที่นำเสนอ: หากเพื่อน ๆ

เราคือ ผู้ช่วยงานวิจัยของคุณ!
เราคือ ผู้ช่วยงานวิจัยของคุณ!

คุณกำลังติดปัญหาในทำงานวิจัยอยู่หรือเปล่าครับ  หากคุณกำลังต้องการผู้ช่วยที่จะทำให้งานของคุณสำเร็จและทำให้ได้ตามเป้าหมายที่ตั้งเอาไว้ 📌เรามีทีมงานที่พร้อมให้ช่วยเหลือ และให้บริการนะครับ 👇 💁 ทักมาหาเราเลยตอนนี้❗✨ ———————————— 📖 รีเสิร์ซเชอร์

Tag : การทำ is จ้างทำ is จ้างทำวิจัย จ้างทำวิทยานิพนธ์ จ้างทํางานวิจัย จ้างทําวิจัย ป.ตรี ราคา จ้างทําวิจัยราคา จ้างทําวิจัยราคาประหยัด จ้างทําวิจัย ราคาเท่าไหร่ จ้างทําวิทยานิพนธ์ จ้างทําวิทยานิพนธ์ราคา จ้างวิจัย ทําวิทยานิพนธ์ ทำงานวิจัย ทำงานวิทยานิพนธ์ บริการรับทำวิจัย รับจัดหน้าวิทยานิพนธ์ รับจ้างทำ is รับจ้างทํางานวิจัย ราคาถูก รับจ้างทํารายงาน รับจ้างทําวิทยานิพนธ์ รับจ้างทําวิทยานิพนธ์ ราคาถูก รับจ้างเขียนรายงาน รับทำ is รับทำ powerpoint รับทำ spss รับทำ thesis รับทำดุษฎีนิพนธ์ รับทำวิจัย รับทำวิจัยราคาถูก รับทำวิทยานิพนธ์ รับทำสารนิพนธ์ รับทำแบบสอบถาม รับทำโปรเจคจบ รับทํา thesis รับทํางานวิจัย รับทําปริญญานิพนธ์ รับทํารายงาน รับทําวิจัย ป.ตรี รับทําวิทยานิพนธ์ รับทําวิทยานิพนธ์ ป.โท รับทําวิทยานิพนธ์ ราคา รับทําวิทยานิพนธ์ราคาเท่าไหร่ รับทํา สารนิพนธ์ รับแปลงานวิจัย ราคารับทำวิทยานิพนธ์ วิจัย